
会员
对比Excel,轻松学习Python数据分析(入职数据分析师系列)
更新时间:2019-09-19 16:31:24 最新章节:15.8 常用数据分析函数
书籍简介
Python虽然是一门编程语言,但是在数据分析领域实现的功能和Excel的基本功能一样,而Excel又是大家比较熟悉、容易上手的软件,可以通过Excel数据分析去对比学习Python数据分析。本书将数据分析过程中涉及的每一个操作都对照讲解,让你从熟悉的Excel操作中去学习对应的Python实现,而不是直接学习Python代码,大大降低了学习门槛,消除了大家对代码的恐惧心理。这也是本书的一大特色,让读者可以像学Excel数据分析一样,轻松学习Python数据分析。
上架时间:2019-01-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
张俊红
同类热门书
最新上架
- 会员本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。计算机8.5万字
- 会员本书以Kettle实现ETL流程为目标,将ETL知识点与任务相结合,配套真实案例,深入浅出地介绍了ETL数据整合与处理的相关内容。全书共8章,第1章介绍了ETL概念和ETL工具,让读者在了解ETL相关的概念后,立刻上手ETL工具Kettle;第2~6章介绍了Kettle工具转换相关的组件,包括源数据获取、记录处理、字段处理、高级转换、迁移和装载等内容,内容与ETL流程匹配,能帮助读者快速掌握ETL计算机8.1万字
- 会员本书本书基于业务问题,就如何搭建分析框架,厘清分析思路,按照标准分析步骤对数据进行怡当的预处理,选择合适的分析方法和分析模型,使用恰当的分析工具对数据进行分析,以及对分析结果进行可视化和符合业务要求的解读等内容展开讲解,帮助业务专家做出合适的业务判断,制定准确的业务策略。计算机13万字
- 会员本书分为4篇,第1篇是基础入门篇,主要介绍数据分析与挖掘的基本概念及Python语言的数据分析基础;第2篇是数据分析篇,主要介绍常用的数据分析方法;第3篇是数据挖掘篇,主要介绍常用的数据挖掘方法;第4篇是实战应用篇,介绍两个完整的数据分析与挖掘案例。计算机10.9万字
- 会员数据挖掘算法为大数据与人工智能的核心,掌握数据挖掘各算法的编程实现,有助于提升大数据的实践运用能力。本书详细阐述了数据挖掘常用算法与编程实现,同时,本书以多个经典的数据挖掘赛题为案例,详细论述了数据预处理、特征选择、可视化、算法选择等全流程数据挖掘过程的编程实现,有助于提升读者面对实际数据问题时灵活运用各类算法能力。计算机4.7万字