
会员
大数据处理框架Apache Spark设计与实现
更新时间:2024-01-19 16:36:47 最新章节:参考文献
书籍简介
近年来,以ApacheSpark为代表的大数据处理框架在学术界和工业界得到了广泛的使用。本书以ApacheSpark框架为核心,总结了大数据处理框架的基础知识、核心理论、典型的Spark应用,以及相关的性能和可靠性问题。本书分9章,主要包含四部分内容。第一部分大数据处理框架的基础知识(第1~2章):介绍大数据处理框架的基本概念、系统架构、编程模型、相关的研究工作,并以一个典型的Spark应用为例概述Spark应用的执行流程。第二部分Spark大数据处理框架的核心理论(第3~4章):介绍Spark框架将应用程序转化为逻辑处理流程,进而转化为可并行执行的物理执行计划的一般过程及方法。第三部分典型的Spark应用(第5章):介绍迭代型的Spark机器学习应用和图计算应用。第四部分大数据处理框架性能和可靠性保障机制(第6~9章):介绍Spark框架的Shuffle机制、数据缓存机制、错误容忍机制、内存管理机制等。
上架时间:2020-07-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
许利杰等
同类热门书
最新上架
- 会员本书分为6篇,共14章。从OLAP核心概念出发,以Presto为例,从整体执行流程到不同SQL的执行原理,力图把OLAP查询的核心流程以一种系统化的方式来给读者讲清楚。第一篇背景知识(第1章和第2章)介绍OLAP的基础知识和Presto相关的背景知识,并给出了后续贯穿全书的SQL代码;第二篇核心原理(第3章和第4章)非常详细地串讲了SQL执行流程,介绍了执行计划的生成和优化;第三篇经典SQL(第5计算机19.7万字
- 会员本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字
- 会员数据挖掘算法为大数据与人工智能的核心,掌握数据挖掘各算法的编程实现,有助于提升大数据的实践运用能力。本书详细阐述了数据挖掘常用算法与编程实现,同时,本书以多个经典的数据挖掘赛题为案例,详细论述了数据预处理、特征选择、可视化、算法选择等全流程数据挖掘过程的编程实现,有助于提升读者面对实际数据问题时灵活运用各类算法能力。计算机4.7万字
- 会员本书主要向读者介绍基于互联网技术的数据分析原理与方法,帮助读者理解并掌握数据分析能力,可使用到实践中并提升工作能力。本书具体内容包括学数据分析有什么用,数据分析的基础方法,数据分析的起点,数据分析的基础,数据分析的准备;通过数据分析看清现实,通过数据分析抓住业务增长机会,通过数据分析发现异常、处理异常、防止异常,通过数据分析预测与推荐,通过数据分析服务线下业务,数据分析结果汇报,以及让数据分析结果计算机10.3万字
- 会员本书从与数据要素关系最密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。计算机14.5万字